Highly Available Distributed Configuration Stores

Kai Anter, Tim Heibel, Lukas Pietzschmann lukas.pietzschmann@uni-ulm.de; kai.anter@uni-ulm.de; tim.heibel@uni-ulm.de

Institute of Distributed Systems University of Ulm

07/26/2023

Agenda

- 1. Motivation
- 2. Consul
 - 2.1 Overview 2.2 Usage
- 3. etcd
 - 3.1 Overview 3.2 Architecture 3.3 Use cases
- 4. ZooKeeper
 - 4.1 Overview 4.2 Data model 4.3 Architecture
 - 4.4 Configuration management
- 5. Summary
- 6. References

1. Motivation

Why not just plain old configuration files?

Reasons

- Scenario: Services start & stop often
 - ▶ Hostnames in our configuration have to be changed frequently & clients have to pull often
- Configuration files have to be replicated

Solution: Configuration Store with monitoring ⇒ changes can be pushed to clients

Use Cases

For Highly Available Distributed Configuration Stores

- Service Discovery
- Configuration of Applications
- (Node Coordination)

2. Consul

2.1 Overview

General

- Developed by Hashicorp
- Released in 2014 as a Service Discovery Platform
- Implemented in Go
- Now: Service-To-Service encryption, Health Checks, KV Store, ...
- Leader-based replication with Raft

Communication Types

Raft Protocol (Consensus)

- Cluster State Replication
- Example: KV store, service and node IP addresses, configuration
- Crash Tolerance: (N/2) + 1
 - 3 Nodes: 1 Crash
 - 5 Nodes: 2 Crashes
 - 7 Nodes: 3 Crashes

Surf Protocol (Gossip)

- Perform and distribute service health checks
- Examples for health checks: via HTTP GET Request, gRPC, TCP, UDP

Architecture

Based on [Has23, Consul Architecture]

Consistency

in Consul

- Writes: always sent to leader
- Reads: three consistency modes:

default leader leasing: leader assumes its role for a specific time window and responds without quorum (However: risk of 2 concurrent leaders ⇒ stale reads)

consistent leader has to verify its role before responding
 stale any server agent (leader & follower) can respond

2.2 Usage

CLI agent

```
$ consul agent -dev

# other shell:
$ consul kv put my/key 123
$ consul kv get my/key
123
```

KV Store

- For configuration, locks, metadata, ...
- Max value size of 512 KB
- Requests to KV store via CLI or HTTP API

Long Polling

```
$ curl -v http://localhost:8500/v1/kv/my/key
# ...
< X-Consul-Index: 19
# ...
$ curl -v http://localhost:8500/v1/kv/my/key?index=19
# blocks until value is changed or timeout is reached
# (max. 10 minutes)</pre>
```

3. etcd

3.1 Overview

Overview

History

- 1. First commit 2013 by CoreOS
- 2. 2014 etcd V0.2 Kubernetes V0.4
- 3. 2015 First Stable Release of V2.0
 - includes Raft
- 4. 2018 CNCF (Cloud Native Computing Foundation) Incubation
- 5. 2019 etcd V3.4
- 6. 2021 etcd V3.5

3.2 Architecture

Architecture

- Operates across multiple nodes (cluster)
- Employs Raft algorithm
- Leader election if current leader crashes
- ▷ high availability, consistency, distribution

3.3 Use cases

Service discovery

Distributed coordination

Configuration management

4. ZooKeeper

4.1 Overview

History

November 2006 First commit

November 2007 Version 0.0.1 on Sourceforge

June 2008 Moved to Apache

June 2010 First Paper [Hun+10]

November 2010 ZooKeeper becomes a top level project

Januar 2023 Version 3.8.1

Popularity

According to Google

What is ZooKeeper?

ZooKeeper is ...

```
... a (1) highly available, (2) scalable, (3) distributed, (4) configuration, (5) consensus, (6) group membership, (7) leader election, (8) naming, and (9) coordination service
```

What is ZooKeeper again?

Use cases

Solve various coordination problems in large distributed system

- Leader election
- Barrier
- Queue
- Lock

- Service discovery
- Group services
- Configuration Stores

4.2 Data model

Data model

- Namespaces
- Three types of Znodes:
 - Persistent
 - Ephemeral
 - Sequential
- Not designed to store arbitrary blobs

Operations

Znodes

- create
- delete
- exists
- getChildren

Data

- getData
- setData

- getAcl
- setAcl
- sync

Watches

4.3 Architecture

Architecture

Architecture

An example

4.4 Configuration management

set noexpandtab
set tabstop=4

5. Summary

Take-home message

- ▶ If you need all inclusive service discovery framework: Consul
- ▶ If you need a fast distributed key-value store: etcd

Consul

- [OO14] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algorithm (Extended Version). Tech. rep. Stanford University, 2014. URL: https://raft.github.io/raft.pdf.
- [Has23] Hashicorp. Consul Documentation. 2023. URL: https://developer.hashicorp.com/consul/docs.

etcd

- [Clo21] Alibaba Cloud. "Etcd: History, Evolution, and Proper Usage | Medium". In: Medium (Dec. 2021). URL: https://alibaba-cloud.medium.com/getting-started-with-kubernetes-etcd-a26cba0b4258.
- [etc23] etcd-io. etcd. [Online; accessed 21. Jun. 2023]. June 2023. URL: https://github.com/etcd-io/etcd/blob/main/ADOPTERS.md.
- [23a] v3.5 docs. [Online; accessed 21. Jun. 2023]. June 2023. URL: https://etcd.io/docs/v3.5.
- [23b] What is etcd? | IBM. [Online; accessed 21. Jun. 2023]. June 2023. URL: https://www.ibm.com/topics/etcd.

ZooKeeper

[Hun+10] Patrick Hunt et al. "ZooKeeper: Wait-Free Coordination for Internet-Scale Systems". In: Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference. USENIXATC'10. Boston, MA: USENIX Association, 2010, p. 11.

[Hal15] Saurav Haloi. Apache zookeeper essentials. Packt Publishing Ltd, 2015.

General

- [Com23] Hashicorp Company. "Service Discovery Consul vs ZooKeeper vs etcd Bizety: Research & Consulting". In: (2023). URL: https://www.bizety.com/2019/01/17/service-discovery-consul-vs-zookeeper-vs-etcd/.
- [Los23] Martin Loschwitz. "Was Etcd, Consul, Zookeeper & Co. in der Praxis taugen". In: (2023). URL: https://www.linux-magazin.de/ausgaben/2015/08/konfig-management/6/.

Kai Anter, Tim Heibel, Lukas Pietzschmann