
Concurrent & Parallel 
Programming in Python
Kai Anter,  Caspar Sachsenmaier

04.07.2023



Structure

● Python Overview
● Libraries

○ threading
○ asyncio
○ multiprocessing
○ concurrent.futures

● Outlook



Overview: Python

● Interpreted, dynamically typed language

● Implementations:
○ CPython (reference implementation)
○ MicroPython
○ Stackless Python (→ see other Lightning Talk)
○ …



CPython

● Written in C
● Current version: 3.11.4
● User scripts are read → compiled to bytecode → executed
● Uses a single thread to[1]:

○ Run the user’s program and
○ the memory garbage collector

[1] Ramalho (2022)

● Has the infamous Global Interpreter Lock



The Global Interpreter Lock (GIL)

● Basically a mutex 
→ only 1 Python thread can run bytecode at the same time

● Ensures exclusive access to interpreter internals for current thread[2]

● Mostly not a problem for performance[3]

○ Exception: CPU-heavy workloads implemented in Python
○ Larger issue: blocking IO operations

[2] Beazley (2010)
[3] Reitz & Schlusser (2016)

→ (In general,) A single Python interpreter can run code concurrently, but not in parallel



Python Interpreter

The Global Interpreter Lock (GIL)

Blocked until Thread 1 releases GIL:
● Timeout reached (5ms)
● Syscall

○ Blocking IO
○ Network
○ time.sleep()
○ …

● Special library function called, 
e.g. NumPy, SciPy, zlibThread 1 Thread 2



Library: Threading

● Thread based, similar to Java Threads
● Creates new OS level threads (not user level)
● Limited parallelism due to GIL
● Use Cases: 

○ Running blocking IO operations
○ Background (daemon) services

Interpreter

Thread 1 Thread 2



threading: Simple Example

args as tuple or array

pass daemon=True for 
background service

non-blocking, 
wait for finish 
with t.join()



Library: asyncio 

● Based on Coroutines + Event Loop
● Introduces new syntax: def async / await (Similar to JS Promises)
● Use cases:

○ Asynchronous IO (without creating
new OS threads per blocking operation)

[4] Ramalho (2022)

Interpreter

Task
Queue

Thread



Library: asyncio 

● Use async def to define a coroutine function → return a coroutine object
● Three ways to run coroutine objects:

○ asyncio.run(...)
○ await awaitable_obj
○ asyncio.create_task(...)

● await can be used on awaitables[4]:
○ Coroutine objects
○ Tasks

[4] Ramalho (2022)

Interpreter

Task
Queue

Thread



asyncio: Run Coroutine with await  

(coroutine function)

(2) call coroutine function to get 
coroutine object

(1) run coroutine from “normal” function

(3) run obtained coroutine object 
with await



asyncio: Run Coroutine as Task 

can be skipped if completion / 
result of coroutine is not 
relevant here

Important: Store reference of task somewhere
→ Prevent Garbage Collector freeing task 
before it is executed 



asyncio: Run Coroutines with TaskGroups

Alternative to storing Task 
reference: asyncio.TaskGroup

blocks until all Tasks in TaskGroup 
are finished

From: Python asyncio documentation



Library: multiprocessing 

● Uses processes instead of threads
● Creates new subprocesses of the Python interpreter

○ spawn (Unix & Windows)
○ fork (Unix only)
○ forkserver (some Unix platforms)

● Bypassing GIL by using one for every process
● Use Cases: 

○ CPU intensive programs without IO operations

Interpreter

T1

Interpreter

T1



multiprocessing: Communication between processes

● Processes can communicate by Queues or Pipes
● Queues are process safe
● Pipes can get corrupted by multiple processes accessing the same end at the 

same time → only one sending & one receiving process per pipe

From: Python multiprocessing documentation



multiprocessing: Shared memory

● use multiprocessing.sharedctypes
● multiprocessing.manager can be used to hold Python objects
● A manager can also be shared on different computers (forkserver)

From: Python multiprocessing documentation



multiprocessing: Process Pools

Like map, but returns 
iterator



● ThreadPoolExecutor or ProcessPoolExecutor
● Use Threads for I/O intensive programs, Processes for CPU intensive ones
● Beware of deadlocks by waiting on another future

Interpreter

Library: concurrent.futures 

Task
QueueT1

ThreadPoolExecutor

T2 T2



concurrent.futures: ProcessPoolExecutor

Interpreter

T1

Interpreter

T1

ProcessPoolExecutor



Outlook: A Per-Interpreter GIL

● PEP 684 – A Per-Interpreter GIL
○ Currently: Interpreters in the same process share GIL → sharing of global states…
○ Proposal: Stop sharing GIL between Interpreters
○ Proposal was accepted, feature will be released with 3.12



Outlook: Making the Global Interpreter Lock Optional

● PEP 703 – Making the Global Interpreter Lock Optional in CPython
○ Currently: No parallelism possible in threads because of the GIL
○ Proposal: Making it possible to disable the GIL
○ Proposal just a Draft



References

● Reitz, K., & Schlusser, T. (2016). The hitchhiker’s guide to python. O’Reilly Media.
● Beazley, D. (2010). Understanding the Python GIL. https://www.dabeaz.com/python/GIL.pdf 
● Ramalho, L. (2022). Fluent Python: Clear, Concise, and Effective Programming (2nd ed.). O’Reilly Media.
● https://docs.python.org/3/glossary.html#term-bytecode (Retrieved: 30.06.2023)
● https://docs.python.org/3/library/threading.html (Retrieved: 30.06.2023) 
● https://docs.python.org/3/library/asyncio.html (Retrieved: 30.06.2023)
● https://docs.python.org/3/library/multiprocessing.html (Retrieved: 30.06.2023)
● https://docs.python.org/3/library/concurrent.futures.html (Retrieved: 30.06.2023)

https://www.dabeaz.com/python/GIL.pdf
https://docs.python.org/3/glossary.html#term-bytecode
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/multiprocessing.html#sharing-state-between-processes
https://docs.python.org/3/library/concurrent.futures.html

